Moxa TN-5818-2GTXBP-HV-HV-T [29/36] Differences between stp rstp and mstp
![Moxa TN-5818-2GTXBP-HV-HV-T [29/36] Differences between stp rstp and mstp](/views2/1196347/page29/bg1d.png)
Communication Redundancy STP/RSTP/MSTP
4-4
STP Calculation
The first step of the STP process is to perform calculations. During this stage, each bridge on the network
transmits BPDUs. The following items will be calculated:
• Which bridge should be the Root Bridge. The Root Bridge is the central reference point from which the
network is configured.
• The Root Path Costs for each bridge. This is the cost of the paths from each bridge to the Root Bridge.
• The identity of each bridge’s Root Port. The Root Port is the port on the bridge that connects to the Root
Bridge via the most efficient path. In other words, the port connected to the Root Bridge via the path with
the lowest Root Path Cost. The Root Bridge, however, does not have a Root Port.
• The identity of the Designated Bridge for each LAN segment. The Designated Bridge is the bridge with the
lowest Root Path Cost from that segment. If several bridges have the same Root Path Cost, the one with the
lowest Bridge Identifier becomes the Designated Bridge. Traffic transmitted in the direction of the Root
Bridge will flow through the Designated Bridge. The port on this bridge that connects to the segment is
called the Designated Bridge Port.
STP Configuration
After all of the bridges on the network agree on the identity of the Root Bridge, and all other relevant
parameters have been established, each bridge is configured to forward traffic only between its Root Port and
the Designated Bridge Ports for the respective network segments. All other ports are blocked, which means
that they will not be allowed to receive or forward traffic.
STP Reconfiguration
Once the network topology has stabilized, each bridge listens for Hello BPDUs transmitted from the Root Bridge
at regular intervals. If a bridge does not receive a Hello BPDU after a certain interval (the Max Age time), the
bridge assumes that the Root Bridge, or a link between itself and the Root Bridge, has ceased to funtion. This
will trigger the bridge to reconfigure the network to account for the change. If you have configured an SNMP
trap destination, when the topology of your network changes, the first bridge to detect the change will send out
an SNMP trap.
Differences between STP, RSTP, and MSTP
RSTP is similar to STP, but includes additional information in the BPDUs that allow each bridge to confirm that
it has taken action to prevent loops from forming when it decides to enable a link to a neighboring bridge.
Adjacent bridges connected via point-to-point links will be able to enable a link without waiting to ensure that
all other bridges in the network have had time to react to the change. The main benefit of RSTP is that the
configuration decision is made locally rather than network-wide, allowing RSTP to carry out automatic
configuration and restore a link faster than STP.
STP and RSTP spanning tree protocols operate without regard to a network’s VLAN configuration, and maintain
one common spanning tree throughout a bridged network. Thus, these protocols map one loop-free, logical
topology on a given physical topology. MSTP uses VLANs to create multiple spanning trees in a network, which
significantly improves network resource utilization while maintaining a loop-free environment.
Содержание
- Communication redundancy 1
- Fourth edition march 2015 1
- User s manual 1
- Www moxa com product 1
- Communication redundancy 2
- Copyright notice 2
- Disclaimer 2
- Technical support contact information 2
- Trademarks 2
- User s manual 2
- Www moxa com support 2
- Table of contents 3
- Introduction to communication 4
- Redundancy 4
- Communication redundancy introduction to communication redundancy 5
- Gigabit ethernet redundant ring capability 50 ms 5
- Turbo ring 6
- Communication redundancy turbo ring 7
- Determining the redundant path of a turbo ring ring 7
- Setting up turbo ring or turbo ring v2 7
- The turbo ring concept 7
- When the number of switches in the turbo ring is even 7
- Attention 8
- Communication redundancy turbo ring 8
- Determining the redundant path of a turbo ring v2 ring 8
- Ring coupling configuration 8
- When the number of switches in the turbo ring is odd 8
- Attention 9
- Communication redundancy turbo ring 9
- Ring coupling for a turbo ring ring 9
- Ring coupling for a turbo ring v2 ring 9
- Dynamic ring coupling drc configuration applies only to 10
- Turbo ring v2 10
- Attention 11
- Communication redundancy turbo ring 11
- Dual ring configuration applies only to turbo ring v2 11
- Dual ring for a turbo ring v2 ring 11
- Communication redundancy turbo ring 12
- Configuring turbo ring 12
- Configuring turbo ring and turbo ring v2 12
- Dual homing configuration applies only to turbo ring v2 12
- Communication redundancy turbo ring 13
- Explanation of current status items 13
- Explanation of settings items 13
- Communication redundancy turbo ring 14
- Communication redundancy turbo ring 15
- Configuring turbo ring v2 15
- Explanation of current status items 15
- Communication redundancy turbo ring 16
- Explanation of settings items 16
- Communication redundancy turbo ring 17
- Communication redundancy turbo ring 18
- Communication redundancy turbo ring 19
- Configuring turbo ring v2 with dynamic ring coupling 19
- Explanation of ring status items 19
- Communication redundancy turbo ring 20
- Explanation of drc status items 20
- Explanation of ring settings items 20
- Turbo chain 21
- Communication redundancy turbo chain 22
- Setting up turbo chain 22
- The turbo chain concept 22
- Communication redundancy turbo chain 23
- Configuring turbo chain 23
- Explanation of current status items 23
- Head switch configuration 23
- Member switch configuration 23
- Tail switch configuration 23
- Communication redundancy turbo chain 24
- Explanation of settings items 24
- Communication redundancy turbo chain 25
- Stp rstp mstp 26
- Communication redundancy stp rstp mstp 27
- The stp rstp mstp concept 27
- What is stp 27
- Communication redundancy stp rstp mstp 28
- How stp works 28
- Stp requirements 28
- Communication redundancy stp rstp mstp 29
- Differences between stp rstp and mstp 29
- Stp calculation 29
- Stp configuration 29
- Stp reconfiguration 29
- Communication redundancy stp rstp mstp 30
- Stp example 30
- Communication redundancy stp rstp mstp 31
- Configuring stp rstp 31
- Using stp on a network with multiple vlans 31
- Communication redundancy stp rstp mstp 32
- Communication redundancy stp rstp mstp 33
- Configuring mstp 33
- Communication redundancy stp rstp mstp 34
- Communication redundancy stp rstp mstp 35
- Communication redundancy stp rstp mstp 36
- Configuration limits of stp rstp 36
Похожие устройства
- Moxa TN-5818-2GTXBP-HV-HV-T Технические характеристики
- Moxa TN-5818-2GTXBP-LV-HV Инструкция по эксплуатации
- MartinLogan Depth i Руководство пользователя
- Moxa TN-5818-2GTXBP-LV-HV Руководство пользователя Англ.
- MartinLogan Descent Руководство пользователя
- MartinLogan Descent i Руководство пользователя
- Moxa TN-5818-2GTXBP-LV-HV Руководство по использованию командной строки
- MartinLogan Dynamo Руководство пользователя
- MartinLogan Dynamo 1000 Краткое руководство пользователя
- MartinLogan Dynamo 1000 Руководство пользователя
- MartinLogan Dynamo 700 Краткое руководство пользователя
- MartinLogan Dynamo 700 Руководство пользователя
- Moxa TN-5818-2GTXBP-LV-HV Руководство по созданию резервированных сетей
- Moxa TN-5818-2GTXBP-LV-HV Технические характеристики
- Moxa TN-5818-2GTXBP-LV-HV-T Инструкция по эксплуатации
- Moxa TN-5818-2GTXBP-LV-HV-T Руководство пользователя Англ.
- Moxa TN-5818-2GTXBP-LV-HV-T Руководство по использованию командной строки
- Moxa TN-5818-2GTXBP-LV-HV-T Руководство по созданию резервированных сетей
- Moxa TN-5818-2GTXBP-LV-HV-T Технические характеристики
- MartinLogan Dynamo 1500X Руководство пользователя